HOME > 회원공간 > 공지사항
제3회 대한전자공학회 바이오영상신호처리 연구회 워크샵
작성자 관리자 작성일시 2017-05-31
관련사이트 (클릭수:75건)
제3회 대한전자공학회 바이오영상신호처리 연구회 워크샵
인공지능시대에 있어서 의료 영상이 가야 할 길
( Medical Imaging in the era of AI )
2017년 7월 10일(월) / 연세대학교 백양누리(금호아트홀) 그랜드 볼륨
초대의 글
 
  바이오의료 영상 분야는 고부가가치 창출이 가능한 고정밀 전자공학 분야로서 이에 특화된 신호검출, 획득, 영상재구성, 최적화 이론 및 영상 후처리, 통계신호처리에 이르가까지 다양한 신호 및 영상처리 기법이 요구됩니다. 최근 인공지능의 눈부신 발전으로 인해 인공지능 기술의 가장 중요한 응용 분야로서 인공지능을 이용한 진단 기술 등에 대한 국가적인 관심이 집중되고 있는 상황입니다. 더욱이 이러한 진단을 넘어서서 최근의 인공지능 기술은 기존의 영상 과학자들의 주요 연구 분야인 영상 재구성의 분야에 본격적으로 적용되고 있으며, 세계적으로 이 분야에 대한 학계의 관심이 집중되고 있습니다.  
 
  따라서, 본 워크샵에서는 이러한 시대적 요구에 부합하고 국내 의료영상 분야의 발전을 도모하기 위하여, 인공지능이 의료 영상분의의 미래를 어떻게 변화시킬 것인가에 대한 심도있는 논의를, 전자공학회 본회와의 공동 기획으로써, 주도하고자 합니다. 특히 Imaging Summit 이라는 타이틀을 걸고, 바이오의료영상 및 인공지능기반 컴퓨터비젼 분야의 세계적인 석학들을 모시고 기획하였습니다. 바이오의료 영상 분야의 Michael Unser, Jeff Fessler, Georges El Fakhri 교수와 인공지능 기반 컴퓨터 비젼 분야의 Yi Ma 교수의 기조 강연과, 국내 의료영상및 컴퓨터 비젼 연구를 선도하고 있는 조장희 교수, 서진근 교수 및 이경무 교수의 기조강연과  국내외 석학들의 패널 토론을 통해 인공지능시대에 있어서 의료영상 분야가 나아가야 할 앞길을 모색하고자 합니다. 

 본 여름 학교를 통하여 바이오의료영상 분야에서 인공지능기법의 체계적 연구가 활성화되고, 세계적인 수준의 많은 연구진을 배출할 수 있는 초석이 되고자 하오니 많은 참석 바랍니다
 
바이오영상신호처리 연구회  위원장 예종철
신호처리소사이어티 회장 김정태
대한전자공학회 회장 홍대식
 
행사 개요
 
o 행사명 : 제3회 대한전자공학회 바이오영상신호처리 연구회 워크샵
            인공지능시대에 의료영상이 갈 길 (Medical Imaging in the era of AI)

 o 일 시 : 2017년 7월 10일(월)
 o 장 소 : 연세대학교 백양누리(금호아트홀) 그랜드볼륨
             (서울특별시 서대문구 연세로 50 연세대학교 백양로)
 o 주 최 :  대한전자공학회, 연세대학교
 o 주 관 :  대한전자공학회 바이오영상신호처리연구회, 국가수리과학연구소
 o 후 원 :  도시바 메디칼시스템즈 코리아(주), HDX Will
 o 홈페이지(국외) : http://imaging-summit.net
 
운영위원
 
o 조직위원장 : 예종철 교수(KAIST)
o 본회 사업위원회 운영위원 :
    서승우 교수(서울대), 유창동 교수(KAIST), 공준진 박사(삼성전자),
    범진욱 교수(서강대), 윤석현 교수(단국대),
o 바이오영상신호처리 연구회 운영위원 :
    김정태 교수(이화여대), 심학준 박사(도시바), 오세홍 교수(한국외국어대),
    윤일동 교수(한국외국어대), 이상철 교수(인하대), 이종호 교수(서울대),
    전기완 박사(국가수리과학연구소), 전세영 교수(UNIST), 정원기 교수(UNIST),
    정 홍 박사(HDX/Wilmed)                 
 
프로그램
시간
세부 내용
강연
08:00 - 08:30 사전등록 접수 등록데스크
08:30 - 09:00 개회식
(인사말 / 워크샵 소개)
 
Morning Session : The Need for AI in Bio-medical Imaging
09:00 - 10:00 Emerging New Brain Imaging ; Super-Resolution MR-Tractography for the study of the Language to Cognition Zang-Hee Cho
(Seoul National Univ.)
10:00 - 11:00 Simultaneous PET/MR: Challenges and Opportunities for Cardiac, Oncologic and neurologic Imaging Georges El Fakhri
(Harvard Medical School)
11:00 - 12:00 Automatic estimation of fetal biometry in ultrasound via  deep learning Jin-Keun Seo
(Yonsei Univ.)
12:00 - 13:00 중 식 -
Afternoon Session : AI Methodology for Bio-Medical Imaging
13:00 - 14:00 Current trends in the design and understanding of image reconstruction algorithms Michael Unser
(EPFL)
14:00 - 15:00 Adaptive regularization methods for dynamic MRI image reconstruction Jeff Fessler
(Univ. of Michigan Ann-Arbor)
15:00 - 15:30  Coffee Break -
15:30 - 16:30 Pursuit of Low-dimensional Structures in High-dimensional (Visual) Data Yi Ma
(Shanghi Tech/Univ. Illinois.)
16:30 - 17:30 TBD Kyoung Mu Lee
(Seoul National Univ.)
17:30 -18:00 Panel Discussion
    * 주최측의 사정으로 프로그램이 일부 변경될 수 있습니다.
 
강연 요약
 
Morning Session: The Need for AI in Bio-medical Imaging
 
Zang-Hee Cho
(Seoul National University, South Korea)
  
Title:  Emerging New Brain Imaging ; Super-Resolution MR-Tractography for the study of the Language to Cognition
 
 Ultra High Field 7.0T Magnetic Resonance Imaging (MRI) and their applications to neuroscience, especially to the areas of language and cognitive sciences will be discussed.  Ultra-high field MRI began to provide super-resolution tractographic images delineating the fine fiber  structures such as the sub-components of the superior longitudinal fasciculus (SLF), among others, suggesting potential applications of these fiber track information, for example, to analysis of language circuitry and other cognitive and behavioral sciences.
 In short, some recent results of the new tractographic imaging obtained with 7.0T MRI and its applications to language and cognitive sciences will be discussed and highlighted.
 
Georges El Fakhri, Professor
(
Massachusetts General Hospital, Harvard Medical School)
 
Title: Simultaneous PET/MR: Challenges and Opportunities for Cardiac, Oncologic and neurologic Imaging
 
 In this talk, recent developments in Positron Emission Tomography (PET) / Magnetic Resonance Imaging (MRI) are explored and the challenges of simultaneous imaging as well as the opportunities afforded by the two modalities are discussed.  The unique sensitivity of PET (picomolar) and its quantitative capabilities can be associated with the superb spatial and temporal resolution of MR as well as its excellent soft tissue contrast to provide an ideal imaging modality for many cancers as well as cardiac and brain explorations.
 Specifically, the role of dual probes and other nanoparticles that can be used to probe simultaneously under the same conditions different physiological processes using a PET and an MR or an optical signal are presented.  Improvements in image quality and diagnostic accuracy are illustrated in specific patient studies and synergies between PET and MR spectroscopy are discussed in the context of guiding radiotherapy.  Beyond oncology, applications in cardiac (viability, perfusion) and brain imaging (neurodegenerative disease, traumatic brain injury) are presented including mapping of mitochondrial membrane potential and simultaneous PET/fMRI for mapping dopaminergic and serotoninergic neurotransmission.
 
Jin Keun Seo, Professor
(
Yonsei University, South Korea)

Title: Automatic estimation of fetal biometry in ultrasound via  deep learning
 
 Ultrasound diagnosis is routinely used in obstetrics and gynecology for fetal biometry, and owing to its time-consuming process, there has been a great demand for automatic estimation. However, the automated analysis of ultrasound images is complicated because they are patient-specific, operator-dependent, and machine-specific. Among various types of fetal biometry, the accurate estimation of abdominal circumference (AC) is especially difficult to perform automatically because the abdomen has low contrast against surroundings, non-uniform contrast, and irregular shape compared to other parameters. The convolutional neural network (CNN) method, which has recently shown great successes in object recognition, was also applied in fetal biometry to analyze high-level features from ultrasound image data. However, this method has faced obstacles in the clinical environment: (i) it is difficult to collect sufficient data for training, and (ii) it is difficult to cope with serious artifacts including shadowing artifacts. We propose a specially designed CNN, which takes account of doctors' decision process, anatomical structure, and the characteristics of the ultrasound image.  This method increases classification performance with relatively small number of data and also deals with artifacts by including ultrasound propagation direction as well as multiple scale patches as inputs.  This  machine learning  method for fetal biometry shows good performance in most cases and even for ultrasound images deteriorated by shadowing artifacts. This talk is about  a joint work with Jaeseong Jang (NIMS), Bukweon Kim, Sung Min Lee (CSE, Yonsei), Yejin Park, Ja-YoungKwon (College of Medicine, Yonsei).  
 
Afternoon Session: AI Methodology for Bio-Medical Imaging
 
Michael Unser, Professor
(
Biomedical Imaging Group, EPFL, Lausanne, Switzerland)
 
Title: Current trends in the design and understanding of image reconstruction algorithms

 Biomedical imaging plays a central role in medicine and biology with its range of applications and level of performance having increased dramatically during the past decade. After a brief recall of the classical inversion techniques (filtered backprojection (FBP), Tikhonov regularization and LMMSE estimation), we present a panorama of the more recent developments in image reconstruction. In particular, we review sparsity-based methods associated with compressed sensing. The role of advanced signal processing there is obvious and rather dramatic, as it allows reconstructing images from lesser views, which translates into faster imaging and/or a reduction of the radiation dose for the patient. We provide theoretical arguments (new representer theorems) that explain the limitations of conventional l2-norm minimization and the better performance of l1-regularization in the sub-sampled regime. We then discuss the emergence of 3rd generation methods that incorporate some form of learning. We present experimental results and comparisons with the state-of-the-art, including a novel algorithm that results from the combination of classical FBP and Deep ConvNets. We conclude the presentation with a discussion of some of the pitfalls and a list of challenges for the future.
 
Jeff Fessler, Professor
(
University of Michigan Ann-Arbor)

Title: Adaptive regularization methods for dynamic MRI image reconstruction

 Dynamic MRI image reconstruction is an inherently under-determined inverse problem because the object is changing as the data is collected. (There is no such thing as "fully sampled data" in dynamic MRI.) The ill-posed nature of dynamic MRI requires some form of regularization (signal models) to distinguish among candidate solutions.  Traditional k-space data sharing methods (like keyhole imaging) use implicit signal models, whereas modern regularized methods use explicit signal models. Typical regularization methods are based on simple mathematical signal models such as wavelets.  This talk will focus on newer methods that are adaptive, where the signal model is learned either from training data or concurrently with reconstruction of the dynamic image sequence.  Machine learning ideas underly these approaches and I will discuss challenges and opportunities. This is joint work with Sai Ravishankar.
 
Yi Ma, Professor
(ShanghaiTech University, China)

Title: Pursuit of Low-dimensional Structures in High-dimensional (Visual) Data

 In this talk, we will discuss a class of models and techniques that can effectively model and extract rich low-dimensional structures in high-dimensional data such as images and videos, despite nonlinear transformation, gross corruption, or severely compressed measurements. This work leverages recent advancements in convex optimization for recovering low-rank or sparse signals that provide both strong theoretical guarantees and efficient and scalable algorithms for solving such high-dimensional combinatorial problems. We illustrate how these new mathematical models and tools could bring disruptive changes to solutions to many challenging tasks in computer vision, image processing, and pattern recognition. We will also illustrate some emerging applications of these tools to other data types such as 3D range data, web documents, image tags, bioinformatics data, audio/music analysis, etc. In the end, we will discuss some extensions of such low-dimensional models, and their connections with other popular data-processing models such as deep neural networks.
 This is joint work with John Wright of Columbia, Emmanuel Candes of Stanford, Zhouchen Lin of Peking University, Shenghua Gao of ShanghaiTech, and my former students Zhengdong Zhang, Xiao Liang of Tsinghua University, Arvind Ganesh, Zihan Zhou, Kerui Min of UIUC etc.
 
Kyoung Mu Lee, Professor
(
Seoul National University, South Korea)
 
Title & Abstract:  TBD

 
사전등록 안내
 
등록비 안내
구 분
학 생
일 반
사전등록
100,000원
200,000원
현장등록
120,000원
250,000원
 
사전등록기간
    2017년 6월 30일(금) 18:00 까지 입니다.
    행사준비를 위해서 등록취소는 어렵습니다. (신중히 결제처리 해주시기 바랍니다.)
 
결제방식
    신용카드 (웹사이트 바로 신용카드 결제가능)
    무통장입금 (한국씨티은행 / 102-50809-243 / 대한전자공학회) 입금가능
 
결제방법
   행사 홈페이지사전등록사전등록 결제 및 확인 메뉴를 선택하여 결제하시면 됩니다.
    (사전등록 신청서 작성을 완료하신 후 결제 가능합니다.)
 
영수증 발행 안내
   통장이체시 : 전자계산서 발행
   카드결제시 : 웹페이지 http://www.allatpay.com 접속 후 전표출력 가능
   * 공통 : 워크샵 당일 거래명세서 배부
 
문의처
    대한전자공학회 장다희 사원   Tel. 02-553-0255(내선4), Fax. 02-552-6093
    http://www.theieie.org, E-mail: inter@theieie.org
 
행사장 안내
 
- 행사장 : 연세대학교 백양누리(금호아트홀) 그랜드볼룸
              (서울특별시 서대문구 연세로 50 연세대학교 백양로)

- 교통편 : 지하철 2호선 신촌역 2, 3번 출구 이용
 
* 행사장 내 건물의 주차장이 협소하여 대중교통 이용을 권장하여 드립니다.
  (연세대 주차시설 이용시 - 개별정산) 

 
- 약도 (연세대학교 홈페이지 약도 링크)

답변


번호 제목 등록자 등록일 조회 파일
Notice : 홈페이지 개편에 따른 비밀번호 안내 홈페이지 개편에 따른 비밀번호 안내 대한자기공명의과학회 2012-09-13 13,473  
269 Advanced MR - Molecular MR 연구회 송년 모임 대한자기공명의과학회 2017-10-27 162  
268 가톨릭대학교 의공학교실 20주년 기념 학술대회 및 기념.. 대한자기공명의과학회 2017-10-18 208  
267 2017년 대한자기공명의과학회(KSMRM) 연수교육 안내 관리자 2017-09-07 543  
266 근골격자기공명영상연구회 정기학술대회 공지_2017년 9월 8.. 대한자기공명의과학회 2017-08-10 497  
265 제 2회 최신 자기공명영상기술 워크샵 대한자기공명의과학회 2017-07-24 742  
264 Magnetic Resonance Angiography (MRA) 29th Annual Internat.. 대한자기공명의과학회 2017-07-21 423  
263 ISMRM sponsored Workshop (싱가폴 chapter) 대한자기공명의과학회 2017-06-29 456  
262 Magnetic Resonance Angiography (MRA) 29th Annual Interna.. 대한자기공명의과학회 2017-06-21 423  
261 한일 MRA symposium (6월 10일, 대구 경북대학교의과대.. 대한자기공명의과학회 2017-06-08 514  
260 제3회 대한전자공학회 바이오영상신호처리 연구회 워.. 관리자 2017-05-31 734  

목록

Gets the previous 10 pages. Go to previous page. [1] 2 3 4 5 6 7 8 9 10 Go to next page. Gets the next  10 pages.

Copyright by Korean Society of Magnetic Resonance in Medicine. All rights reserved.
(04553) 서울시 중구 충무로 2가 50-6 라이온스빌딩 타호비지니스센터 3층 213호
Tel: 82-2-2269-4388  E-mail : office@ksmrm.org